
Deploying Expert Systems in Ada

i-..,I

l..=l

I

Z

r

r0 .,i-
"-_ S. Daniel Lee
U_

o- Bradley P. AllenDO

=
b

L_

(J3

_E
uJ .j
k- _j

u3
>" L._

C
LLJ
CL >

LU<_

Z O
=.-..(,._

ED ,_ el.

" _ i..4

e'O l,. U

•"30 _._

,"-_¢_((#l
I

I _J .iJ

< E
7Z 0

0

r-..I

l'13 |nference Corporati0n

October 1989

Cooperative Agreement NCC 9-16

Research Activity No. SE. 19

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

\Research Institute for Computing and Information Systems

University of Houston - Clear Lake
w,

i T-E'C" H" N" !" C" A" L R.E'P'O'R'T

W

M

m

7

i

_=:='='='='='='='='_S

Ill

The

RICIS

Concept

L=I

m

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space _:
Center and local industry to actively Support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering andsc_ce responsibilities. JSC agreed and entered into L_

a three-year cooperative agreement with UH-Clear Lake beginning in-/Vi_to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conductthe research. W

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear _

Lake, the mission is being implemented through interdisciplinary involvement of _j

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear _

Lake establishes relationshlps With other universities and research organizations, WI
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and _:

research objectives to advance knowledge in the computing_n_ormation _-
sciences. Working jointly with NASA/JSC, RICIS advises on research needs, _-

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC. _=_ :
M

w

Deploying Expert Systems in Ada

4

W

W

m

W

W

I!

mi
I

z
i

mi

i

.IB

Ii

I

mi

I

Ii

Z
II

I

I

Ull

!

I

i

[]
I

I

B J

== !

I!

w
Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

i !

m

i

m

D

m

z
BI

mm _
D

m
l
R

[]

i

U

i _ j
m i

|
mm
Z

I

l |

g _
!
!

!
i

ij

i |

all _

m

ii

mm ."
g _

""N

Deploying Expert Systems in Ada"

I

w

w

m

L

i

I

m
i

w

I

=

._ Daniel I.ee and Bradley P..-\lien

h_f_,'e,lceCorpo,'atio,l! _ _
5300 W. Centur.v Bh'(I. ,,,_

Los Angeles, CA 000-15 b

Abstract

As tile Department o1 DO'ease Ada mandate begins to

be enforced aclively, inlere.,q in deploying expert

systems in Ada has irrcreased. This paper" introduces

a prototype .-\da-ba.sed expert .-,ystem tool called

,.LRT:Ada. This prototype was built to support

research h|to the language aud operational issues of

expert, systems in .\(la. ART/Ada allows applications

of a conventional expert syslem tool called ART-IM

(Automated Reasoning "Fool for Information

Management) to be deployed in various Ada

environments with efficient use of time and space.

:MRT-I'M, a C-based expert system tool, is used to

generate Ada source code which is compiled and

linked with an Ada-based inference engine to produce

an Ada executable image. The future research

directions call for improved support for real-time

embedded and distributed experr systems. ,_:_T/Ada

will be used to implement several prototype expert

systems for the Space Stalion Freedom Program

testbeds.

1. Introduction

1.1. Motivation

.-ks the Department of Defense mandate to

standardize on Ada as the la,lgt, age for embedded

software syst.ems development begins t,o be actively

enforced, inte|'est from developers of large-scale Ada

s),st.ems in making expert systems technology readily

available in Ada environ meats has increased.

Two examples of Ada applications that can benefit

from the use of expert, systems are monitoring and

control systems and decision support systems.

Monitoring and control >ystems demand real-time

performance, small execut.ion images, tight integratio,1

with other applications, and predictable demands on

processor resources; decision support systems have

somewhat less stringent requirements. An example

project that exhibit,s the need for both of these types

of systems is NASA's Space Station Freedom.

Monitoring and control systems t,hat will perform

[.ault detection, isolation and reconfigt,ration [.or

various on-board systems are expected to be developed

and deployed on t.he station either in its initial

operating configu,'ation or as the station evolves;

decision support systems that will p,'ovide assistance

in activities such as crew-time scheduling and failure

mode analysis are also under conside,'atio,i. These

systems will be expected to run reliably on a standard

data processor, currently _visioncd to be a 1-16

megabyte 80386-based workstation. The Station is

typical of the large Ada software development

projects that will require expert systems in the l.qg0's.

Another large-scale application that can be benefited

from the Ada.-based expert system (ool technology is

the Pilot's Associate [PA) expert system project for

military combat aircraft, 191 Funded by the Defense

Advanced Research Projects Agency (DARPA) as part.

o[. its Strategic Computing Program, the PA project

attempts to automate the cockpit of n|ilitary combat

aircraft, using Artificial Intelligence (AI) techniques.

A Lisp-b,'Lsed expert, systern too[, ART (.4.ulomated

Reasoning Tool), was used t,o implement the Phase 1

t

. ..-._, •This paper will he publish_.,t in the [ro',_, ' lings ol" th_ TRI-A,ia 'g9 Conference to be held during October "_"_ '_ I'Jg(.J in Phtst,urRh. PA

w

Ill

prototype ..\n Ada-l)a.<d e×l)ertl .,v,,tem tool <'an

provide a llligratioll path to deploy tilt' prolot+vpe on

all on-boartl cotlil)uter bccatBe .-\,:]a rross-conipilers

are readih availahle to ru,+ -\da programs on most

t'mbedded processors used for avionics.

1.2. Approach

• a C deployment conlpih'r, nll(]

• an interactive develol+nlent t..r_vironm+:nt.

.:',.RT-1-M's kernel +upl)oi't.-, tile following [eaI ure:.:

• a forveard-chaining rul,: +)-slt_,lll I)as,,tl on

the Rete algorithm 161.

Inference ('orporation dt'vdol)ed an exl)ert +)stem

tool calld .-\RT (._tltOlllaled Reasoning Tool) that has

I)een ,:'ommercial!y availal)le for se.veral)-ears ii1!.

:',uRT is written in Common Lisp and it. supports

va.rious rea.soning facilities such as rules, ol)jeets,

truth maintenance, hypothet.ical reasoning and object-

oriented l)rogrnmming. Last)ear, Inference

introduced another experl >vst,em tool called MRT-IM

(Autolnated Reasoning 'Pool for Information

:Xlanagement), which is also commercially

available Ii'2]. M:F['-IM is writ.ten in C and it

supports a major subset of +.LRT's reasoning facilities

inehlding rules, objects_ tj'tith maintenance and

objeet-orie,lted programming ' Both ART and MRT-

I-M have been successfully nsed to develop many

applications which are in daily use

today [5], [lS]. [iT]

• an object sy..-,tenl.

• object-oriented progr'anuning.

• a justification-based truth maintena|lee

svstem(JTMS) and

• explanation generation utilities.

,.MRT-IM supports deployment of at)plicatLions in ('

using a C deployment compiler that converts an

application into C data structure definitions in the

form of either C source code or object code.
=

ART-fM's interactive development environment

includes a highly functional user interface that allows

browsing and debugging of the knowledge base and an

integrated editor that allows incremental compilation

O,.,r approadl in designing a prototype Ada-based

expert, system tool was to use t.he architecture of ART-IM is available for 'v_lS. MVS aM NIS-DOS

proven expert system tools: ART and ART-IM. ART-

rM was selected a.s a baseline system because C is

much closer to Ada. \Vhile A.RT-_I's inference

engine w<_ reimplemented in Ada, ART-fM's front,-

end (iks parser,,'arlalyzer a_,ld user interface) was not.

[nstlead. AITI'-I]vl was enhanced to generate A.da

source code that would be used to initialize Ada data

structures equivalent to :\RT-I'M's internal C data

structtires. This approach allov,'s the user to take full

advant, age of .ART-[M's interact,ire development

environment while developing an application; once the

developrnent is complete, Ihe application is converted

to A.da source code t,hat is compiled anti linked with

t,he Ada rtuitime kernel.

environments.

2, T/Ada: An Ada-based
Expert+ System Tool

2.1. Ada Runt|me Kernel

The :kRT/Ada runt.ime kernel is composed of the

following components:

• an inference engine.

• a procedural interface package,

1.3. The ART-IM Expert System Tool ,. a memory management package, aM

.-Yi_T-IM is a general purpose expert s)'st,em tool

written in 0 r It consists of

• a l"tintime kernc, I.
+- :

•Ada deployment compiler ut.ilities.

MqT/Ada's inference engine is ;in Ada

irilplelnentatiorl of ..-XRw-rxls hlfvrel;ce eugint' and is

Ill

Ii

lli

Ill

i

U

I
Ill

li

i

ill

i

II

II

II

i

lI

ill

Ill

--=
II

--Iill:

! i
i

L

'lii

J

w

m

w

w

f|,nctionally identical Io ,.'d_T-IM's.

.-\RT ..\da's procedural interface includes all public

functions in ..\RT-INI exct.pt for silos(' ,hal :ire used

only during the development phase and I.hose Ihal are

part of AR'I'-I_I's user interface toolkit. .-\R'I" Ada's

procedural interface can t)e used either in tile Fighi-

hand ,q(h" of a rule. or direcily in tiser's .\da

[,'ogran'is. "['lie procedural ililerl'ace inclu(les data

type conversion.-, belvceell tile ..\da data types alld the

ART-INI data types, predicates, ol)erations Oli .3tR'['-

IM object.s, ART-IM commands, l'O functions and
math functions.

.ART/LA.da's memory management package uses the
Ada features new and unchecked deallocatlon to

allocate and deallocate rriemory.

The A.RT/'Ada runtime kernel contains utilities

called by the Ada code generated by tile A.da

deployment compiler

2.2. Ada Deployment Compiler

ART-t-M was augmented with an A.da deployment

compiler to support A.RT/Ada. As shown in figure

°-1, its input is an ART-IM source file, and its output

is Ada source files. At any point after an ART-_,I

source file is loaded into ART-IM, and the knowledge

base is initialized for execution, the Ada deployment

compiler may be invoked t.o generaie the Ada source
code that would initialize the internal data structnres

of A_RT/Ada. An Ada package specification

generated by ART-IM for an exalnple application
called Nit" E?'3:_ERT SYSTEM is as follows:

-- generated automatically by ART-IM

packmge MY_EXPERT_SYSTEM is

-- inttimlize %he mppllcation.

procedure INIT;

end MY EXPERT SYSTEM;

An Ada main program that. the user would write to

initialize and run the application v,'ould look like this:

-- This is a main program written by the user

-- ART is a public package of ART/Ada

with ART, MY EXPERT SYSTEM.

procedure MAIN is

begin

MY EXPERT SYSTEM INIT; -- initialize it

ART.RUN(-_) -- run it
end MAIN;

In addition Io generating .-\d:l -ourcc co\h, ihal

represents tile knowledge I)ase, ,lit' .\d:l dcF,loylltenl

compiler also generates a call-out interface module

that is used t.o call Ada subF, rogranls frorn .-\RT .-\da.

ART-[M provides a language to specify tilt' c;ll[-i)lll

interface for calling Ada subpi'ograms from .-\RT-IX[

or A.RT/Ada. The Ada deployment compiler is
written i,I C and is linked with ART-IM.

2.3. Ada Call-in and Call-out

It, is common that an expert system application calls

out to a procedural language such as Ada from an

expert, system shell. Since ART-rM is used to develop

an ART/Ada application, it is critical to allow the
usel _ to call out to Ada from ART-IM.

An expert system application often calls public

functions of an expert system tool from a procedural

language (e.g. Ada). Since :MRT-IM is writte,l in C,

each public function must be provided with an Ada

binding to be called from Ada.

A consistent Ada call-in and call-out interface is

provided for both development and deployment
environments so that the user-written Ada code runs

wMmut modification when it is deployed in Ada after

being developed in A.RT-IM. The ART-IM Ada

binding consists of A.da functions thai, call ART-IM's

public functions written in C. Tile specification of

public functions in both the A.RT-rM Aria binding and
the ART/Ada runtime kernel is identical.

Not. all Ada compilers snpport the feature of calling

Ada from C',. On V,_X/VMS, the DEC: Ada compiler
can be used because both DEC C and DE(]: Ada

compilers confirm t.o the \;MS calling st.alldard. On

Unix platforms, the Verdix Ada compiler can be used

because it, supports this feature well: it is already

being used as an in-house development tool for the

ART/Ada project.; and it. is tlsed I)y many .\da

progranlnlers on Unix plat, forms. Thi,s re_,triciion

exists only on an ,AJ_'I"-IM development IHait'ol'nl and

,)

(lot.,, uol prevent the users from porting generaled
\da ,'ode and tl,e ARTj/Ada runtime kernel to other

\,la con,pile,'s and hardware platforms In fact,

\P,T .\+I:+ has been already ported to multiple .-\da

COmF,ihq's including DEC'., +-\Isys and Verdix and

multiph' hardware platforms st,oh as a V,-L\,'\%IS. a

_,,n al+d ;1H lt3Xl PS:2

.\d:, data t.vpes supported for the call-in attd call-out

i,_te,f:,cu- are: 32 bit integer (INTEGER_TYPE), b,l

bit float (FLOAT_TYPE), boolean

(BOOLE:\N_TYPE), string (STRING), and an

abst ract_ data type for objects in ART-IXl

(ART_OBJECT). Table 2-1 summarizes the

mapping between ART-[M, C and Ada data types.

.-\I]'F-I_ [

integer

floa t,

boo lea n

string

sy m bol

art-object

C

long

double

long

char *

char *

st,ruct *

Ada

INTEGER T_E

FLOAT TYPE

BOOLEAN TheE

STRING

STRING

ART OBJECT

Table 2-1: Data Types for Ada Call-in/Call-out

For example, in order to call out to an Ada

funct+ion. CALC_AVG, using an ART-IM function

calculate-average, define the following in ART-IM :
+

- define a function, cglculag_-average,

(def-user-fun calculate-average
;; Ada _ame +

:epname "CALC_AVG"

- argument types
:arEs ((numl :float)

(num2 float)
(hum3 :flo_))

• return type
;returns"floaG

" Ada compiler

:compiler dec-ada)

A specification of an Ada package called USER
should I>e also defined as follows:

t

"l'l'w syntax of +.\RT-IM's prc,,:e,tural language is similar to

('omrnon Lisp

-- ART is a publlc package of ART/Ada

with ART;

use ART;

-- USER is a package for user's Ada code

package USER IS

-- Ada functlon is called, CALC AVG

function CALC AVG(NUHI ; FLOAT TYPE;

NUM2 : FLOAT TYPE,

NUM3 : FLOAT TYPE)

return FLOAT TYPE;

end USER

This Ada function, CAI_,C_AVG, can be called
from .-\RT-_I a.s follows:

• ;; call an Ada function, CALC AVG,

:;; tO calculate an average.

(calculate-average 50.0 45 0 55.0)

which would return 50.0.

2.4. Deployment in Ada

The met.hodology for developing an AI_T,;Ada

application defines three distinct platforms, some or

all of which may be the same:

• an ART-IM development platform with

Ada call-in and call-out capability on

which an application is actually developed

and debugged;

• an Ada compiler platform On Which either

a self-target compiler or a cross-compiler is

used to compile ..\da source code; and

• a t.argel, platform on which an Ada

executable image will be deployed.

The development ph,_e would involve lhe

development, of an ART-IM program wit.h Ada code

that, interfaces with .M,_T-IM t,hrough an Ada call-in

and call-out imerface, which occurs on the A.RT-_I

developnlent platform

W

I

I

=

m
I

i
m

I

B

i

=

r

I

=

I

i

m

z

i

i +

Lexlr

,L
Code

Analyzw

ART-IM

GmMo6'

17̧ A_ii! i

w

w

v

w

Figure 2-1: Ada Deployment Compiler

Figure 2-2: .-\da Deploymenl Procc, ss

I

= ± 5:-

"Fhe deplo.vnlent ph:Lse would invoh, e eonlpilalion of

\<la code generated by the ._R'I'-rM Ada deploymel_i

compiler and Ada code wl'itten hy the user, which

occurs on lhe platfornl where the ..\da compiler runs

The AP,T ..\(la runlime kernel is provided either in an

.\<l:l source code form or as an Ada library that i_

cr_mird usiilg l]le snnie .\da compiler. 1t" the Ada

compiler is a ",ell'-iargc't compiler, the Aria cxecut, abte

ilnage will be deploye(I on the sanle I)lalfornl where

_he :ida compiler rnn5. If it is a crossicoinpiler, i1.

will I>o deployed on the target platforni (which may

be an on-I)oard cornputer).

As shown in Figure 2-2, the Following steps are

needed to deploy an MRT-IM application in Ada:

1. Develop and debug an application using

AR'F-INI's interactive developnlent

environment. If necessary, call out toAda

From :\RT-I'NI using the standard call-out
interface, or call into =LRT-IM from Ada

using the Ada binding.

"2. Generate the Ada code from ART-IM

using the Ada deployment compiler, This

Ada code is portable to any self-host or

cross-compiling Ada compilers. If \,he Ada

compiler platform is different, from the

ART-IM development platform, the

generated Ada code }:an be moved to the

platform on which the Ada Compiler runs.

3. Compile the generated Ada code and the

user-written Ada code using eit.her a self-

target compiler or a cross-compiler into an

appropriate Ada library of the ART/Ada

runtinle kernel.

I. Create an Ada executable image by linking

an ..\da main program.

5. Deploy the Ada executable image on a

host computer or on a target system

3. Discussion

3.1. Performance

The ART .-\da project succeeded in proving that

at)l)licalions of a convenlional expert system tool

couhl tit= deployed in various :\d;i environrnpni.-, _il h

cfficiclil u_,e of linlt' and >pace. Tile prelinliniu'y

beilchll|;trk resii]l of Ihe .MTT .-\<.]a prototype shows

thai the _pcc'd and the _,ize of .-KRT Ad:l prololypc i.,,

conlpnrat)le io olhcr tools ineludin I C-b<_ed tools.

allhough if is ,:onlvwhal slower and larger than .\RT-
IXl

The ad(Ir,,ss sl)acc limitation of ctlrrenl generation

elnbedded tlroces';ors, slick a-', the XIIL-STD-I750A, i_

I nlegawoM (2 nwgabyles), within which all ._oft'.vare

systems includiqg tile operating system have to run.

TMs might be too restrictive for large expert systeni

applications, New generation embedded processors

such a.s the 80386 would be more than adequate for

expert sv.-tems developed using ART;'Ada.

While Ada compilers are improving, they still have

not reached the nlaturikv of C coral)tiers. It, has also

been observed that both the speed and the size of

XRT Ada varies up to 30% depending on which Ada

compiler is used. A recent, paper discusses the key

technical isstles involved in producing high-quality

Ada compilers [7]. .,-ks Ada compiler technology

advances, A.RT/Ada's performance will improve; we

expect, t,o narrow the performance gap between ART-

I]M and A_RT/Ada.

3.2. Ada Limitations

During the reimplementation of the ART-IM

run\tree kernel in Ada, several isstles concerning the

limitation of Ada language arose,

i_

In order to achieve ma.ximuna time and space

efficiency, M:IT-1]kl ha._ been optimized in ways that

are not F,oriable to Ada. For example, the type ca.st

feature of the C language ha-s been nsed both to

optimize data structure and to implement an internal

memory manager. .-kRT-INl's memory manager
maintains its own fret, list and handle,, all allocation

and deallocalion requests from the ART-IM kernel: it.

allocates large blocks of inemory from the system, and

then fulfills individual (relatively small) requests for

storage from the large hlock_. As storage is released,

il, is added to an internally maintained free list: the
blocks themselves are never rele,xsed back to the

system. There are several advantages to this

approach: lilt* free space is managed in a common

pool by a single l'aciliiy and is available for allocation

Ill

I
I

II

i

I

i
I

I

L

II

I

I
i

I

II

I

i
I

I

!
I
i
I

I

i i
i |

i :i

5 i

w

w

I

w

w

v

i

i

O[:ll't)ilrarv (tala t,vt)(.'_ b,w |l_il]_ |hi-' type ca:st

cal_;d)ilit.v h] C: and it is fa.,,ter Ihan using system

routim's for mnall rpquest_. The success of ART-IM's

us,t" or type C;'L",tillg relies on otllel" feat.tll'eS of the C

language defiuition: there is a direct correspondence

between addr,esse _. and poinler types; the mapping

betv,ee.n data t_t,+t':-,, ill,"ltl(ling _-tI'uCItlI'OS and ill-rays,

is v.ell defined and _,traightforv,ard.

:\da doe_-, provide a facility for convert.ing between

data l.ypes, although this feature has intentionally

been made difficult to use. In order to convert fl'om

one data type to another, the generic function

unchecked conversion must be instantiated for each

conversion required. The existence of a type cast.

capabilil.v in ..\da is insufficient to implement, the

__kI{W-iN[features described above, however. No

correspoudence is guaranteed between the type

SYSTEXI.ADDRISSS aud Ada access types. Indeed,

on some iml)lementations the underlying

representation is different for addresses and access

types. The eonst.raint checking requirements of Ada

requi,'e t.hat the representation of many objects

include descriptor information. The format of these

descriptors is not. defined by the language. Hence, it.

is impossible to implement the ART-IM style memory

manager in Ada using unchecked conversion.

Compared to .ART-INI, this has resulted in some loss

of efficiency in ,ART/'Ada that. allocates and

deallocates memory for each data type directly from

or to the A.da runtime sy'stem using Ada features, new

and unchecked deallocation.
i

We also discovered other limitations in Ada that do

not. exist in C':

..\RT-IIkl has an inte,'preter (similar to a

1,isp interpreter) that calls a C function

using a C ft, nction pointer. To emulate

ART-IN'I's function call mechanism the

Ada deployment compiler automa:tically

generat.es Ada source code for a procedore

called F'I.iNCALI, that has a large case

statement. This ease statement contains

all tile Ada subprograms that are called

R'om an :\RTAda application. Each

subprogram is assigned wit.h an [D

number. To call an Ada subprogram, the

procedure FUNC-kLL is called with a

SUbl_rograln ID In+tuber. \Vhile it. nlay

(arise iIi;lilllell,qn('e i)rol)lems, t.he use of

I'unction pointer,-, can provide better

performance thau lhe use or the \da (ase

:-tat.eulent

Bit operations (,...g. I)it_ise ,..xclu,,ive OR,

bit',viseshift operations, ,.qc.) thai inzv be

used to impteult, nt efl'icivnl h;>hing

algorithnls are uot pro_ided iu .-\da Tht'v

Inay be itnplemcut,,d in ..\da but Olllv xvilh

poor I)ert'ormance

Because a math lihrary, whh'h is part of

the standard C'. language, is not parl of tile

standard Ada, itr iS hard tO wrile l)Ol't,d)le

Ada code that uses mat.h functions.

Representation specificat ion is not

portable because each -\da compiler

and/or hardware platl'ornl may use a

diffe,'ent memory bonndary.

Variant, record is tile only Ada data type

that can be used to implement C's union.

but, it is not, as efficient, nor I'lexible.

Some Ada compilers do not allow calling

an Ada program from another language

because Ada is a rt, ntime environment ae,

well as a programming language. When it

is supported, many restrictions are usually

imposed: the main program must be an

Ada program, and exceptions and ta-sking

may not be used by the Ada program

called from another language.

In C, conditional compilation facilitated

by preprocessor directives (e.g #define and

#if) allows maintaining a single source file

for multiple platforms. In Ada. no such

facility exist's, and muhiple files may have

t,o be maintained for multiple platforms.

An Ada library system may lead to wasted

disk space. F'or example, an .-\da lihrary

management sy.-,lenl requires duplication

of the whole library when the body of a

package in the library ha.'_ dual definitions.

In C, when functions are defined more

than once, they can be simply stored in

multiple local libraries while tile rest of

the program is stored ill a main library

without duplication. Onl+v one of Ihese

multiple local libraries is linked with the

w

main library

• .\ C-_tvle l'oruu_tthlgfunction(e.g.printf,

spr'irllf, etc)is hard. if not impossibh', to

ilnplenient in Ada because the data types

of ils I'unclion argtlnlents are not pro-
dei erniinc,.I.

Various .-\da language issues are heing studied by

several workirlg groups including the Ada Language

Issues \Vorking Group (AL[WG) and the Ada

Runtime Environinent Working Group (A,RTEXV(I).

and ,,,ill be proposed for the Ada 9X standard [1], [2].
We believe that, come of tile isstles discussed in this

paper should also be considered for the ,-\da 9X.

3.3. Related Work

FLAC (Ford Lisp-Ada Connection) uses a Lisp

environment to develop an expert system application

and generates A.da code to be deployed in Ada

environments '_13I. Its knowledge base is specified

using a graphical representation similar to that, of

\rLSI design {e.g. OR gates and ,AND gates). FLAC is

similar to ART,Ada because its development

environment, is not implemented in Ada but Ada

deployment is supported. The difference is, however,

that FLAC's development environment is based on

Lisp, while A.RT/Ada uses that of ART-I'M which is

writt.en in C. C and Ada development environments

coexist, on the same hari[ware-p-iai, rorms more often

than Lisp and Ada development environments do.

FLAC. for example, uses a special-purpose Lisp
machine for the front-end, and a _'A.,X rot the A.da

deployment. Both .&RT-I'M and ART/Ada can run on
tile same hardware. Another difference is that

FL.\C's input, is graphics-orlented while ,adRT,!Ada is

language-oriented. FLAC's knowledge base is pre-

compiled and static, which means that objects may

not+ be added or deleted dynamically at rt, ntime

ah.hough ih_,ir vahles may be changed. This impose

major restrictions on the reasoning capability which

do not exist in .,\RT-_I and ART,'Ada.

CHRONOS is a commercial expert system tool

written in .-\da that was int.roduced recently. It is

developed and l[larkel,ed by a French company,

Etlrist.ic gysterrls. ..ks its name implies, it. supports

temporal rea.soning capabilit:ies by time-stamping each

fact with lt.mporal attributes. ('urrentl', little is

pul>li-_hvd al>oul this tool

:\nother c+onlrrtercial 1ool i:, all ol>jt.cl-orien t+,<l

progranilning envirollnleni called (+la.-sic-:kda i18i It
seems to have its i'OOl.S in 5qnlalh+alk. Plavor+ and

(+i,O_ (('Olnlilon l+isp Object .q)>lt+lli). .-\hhough

(+lassie-Aria does not -,llpporl rllles, if.', objecl-orienlell

progranlnling features are" similar 1o .\RT-IXI's ot)jecl

system.

It is reported that _everal logic-ba-_t,d tools supl)ort

Prolog in Ada [I], [3], '<10l. Altlmugl, Prolog can I)._

used to implement expert systems, its approach and

scope are signit'icantly different, from expert, svst.eln

tools such as ART-IM. These tools, therefore, are not

covered in this paper

3.4. Future Work

ART:'Ada will he used by several NASA sites to

implement prototype expert systenls for the Space

Station Freedom Program testbeds This will allow

research to understand the potential uses and

operational isstles of ART/Ada.

Our ['uture research effort, will be focused on real-

time embedded and dist,ributed applications:

• to meet real-tin]e requirements.

• to support, distributed environments (e.g.

parallel processors), and

• t_oFit, into embedded processors.

Real-time requirements are still not very well

understood il..q]. :Su-pport for real-time app]itat_!oj)s in

an expert system tool is usually focused on temporal
tl4rreasoning capability or on better performance_ v

No tool presently available seems lq address

guaranteed response i.ime. Whih' it is IlOl clear how

an expert system tool can satisfy ha,'d real-t, ime

requirements by guaranteeing response \fine. its
performanee could be Opiimized to satisfy .soft real-

time requirements [151- Allhotlgli it is possible to

implement t.emporal rea.,_oning ill ,,\R'F Ada using

existing features, it, wouhl be straightforward to build

*When rules :ire not used. ART-tM ,l t,,, vi I ;is :,ll ,,I,j,-,:t-

oriented l,rogramming Pnx'ironm_nt.

11

i

[]
I

m

m

i

I

I

i

I

I

=

I

i

m

i

I

i

I

!
I

I

I
i
im

I

i

I

II

I

I

w

w

i

I

w

w

temporal reasoningcapability(lire(llyintoART :Ada.

One vcav to -q+pporl i)aralleli,qn in a R{qe-based

cXl)ert ,.3-,tern tool is to paralh, lize the Rete

nctwork 78i. This approach may require specialized

hardware. Another approach is a message-passing

ar('l_itecture thai allow-_ multiple expert systems to

('Olllnlnllicale asvnchrollou_,lv. This approach ('an I)e

in)l>lem(,nted I>y <h'veloping nm!tiple ART, Ada

programs and a conlmunications package outside of

.\RT :\da Ideally. though, a built-in capability

should 1)e provided Io support multil)te cooperating

expert systems that can run as mulliple processes on a

single processor or as distributed processes on multiple

processors. If multiple "knowledge-I)ase packages"

are supported in a single program, each package can

I)e deployed as an expert system module that would

communicate asynchronou.-ly with other modules

through a message passing mechanism that may have

to be customized for each software/hardware

platform. Ada tasking would I)e ideal for

implementi,_g this because it is portable and does not,

require customization.

Although semiconductor technology is improving

very ral)idly in t,lle comnle,-cial sector, embedded

processors are still ba.sed on the old technology.

.Modern operating system features such as virtual

memory are not readily available on most. on-board

computers. The resource requirements on these

computers such as processor sl)eed and real memory

are quite stringent.. It is essential that. AFtT/Ada

meet lhese requirements for the emerging new-

general,ion emt)edded processors such as the lnt, el

80386. the Intel 80.q60. and the MIPS RISC chip.

4. Acknowledgments

The authors wish to acknowledge the guidance and

support of Chris Culbert. Bob Savely and Bob Brown

of NASA Johnson Space Center lklission Planning and

Analysis Division, Greg Swietek of NASA

Headquarters Space Station OFfice, and Captain Mark

Ger_h of [:SAF Technology and Requirement.s

Planning. ,klark Auburn. Don Pilipovich and Mark

\\'right. of Inference ('orporalion contributed to Ihe

project.

References

1. .\da Language Issues \\:orking Group. ".\da

Language Issues \Vorking Group (.-\IJ\VC;) ._linute_, of

17 .'\ugust 1988" Ado l._llers l.\. i

(Januar) Fel)ruary I.q89).

2. Ada Runtime Environnwut \Vorking Croup.

".-\ctivitie-_ or the Ada Rlllllinle ['_nvironlm.nl

\Vorking Group". Ado L_ltrrs 1.\. 7) (.lul_ .-\ugm, l

1989).

a. Bobble, P.O. ADA-PROLOC: An.-\da System for

Parallel Interpretation of Prolog Programs.

Proceedings of the third Annual Conference on

Artificial Intelligence and Ada. 1987_

4. Burback, R. PROVER: A First-order Logic

System in Ada. Proceedings of the third Annual

Conference on Artificial Intelligence and .,\da. 1987

5. Dzierzanowski, J.M. el. al. TheAut, horizer's

.'\ssist,ant: A Knowledge-based Credit Authorizat.ion

System for American Expres.-,. Proceedings of the

Conference on Innovative Applications of Artificial

Intelligence, ,a_au_I, 1989.

6. Forgy, C.L. "RETE: A Fast Algorithm for the

Many Pattern / Many Object Pattern iXIatch

P,'oblem". Artificial Intelligence I0 (1982).

7. Ganapathi, M.,Mendal, G.O. "Issues in Ada

Compiler Technology". C'omputer :?& 2 (February

1989).

8. Gupta, A. Parallelisnz in Production Systems.

Pitman Publishing, 1.q88.

g. Hugh, D.A. "The Future of Flying". AlE.rpert

8, 1 (.January 1988).

10. lee, S., el,. al. Raising ALLAN: Ada Logic-Based

Language. Procee(lings of the third Annt,al

Conference on Artificial Intelligence and Ada. 1987

11. Inference Corporation...t.t_F _)r.sion 3.:2

Reference Manual. Inference ('orporalion. 1988.

12. Inference Corporation. AEgT-l._l 1.5 Ige fc,'ence

Manual. Inference Corporation. 1989.

13. Jaworski, A., LaVallee, D., Zoch, D..'\ Lisp-Ada

Connection for Expert System Develol)ment.

Proceedings of the l.hird Annual Conference on

..\rtificial Intelligence and A(la. 1987.

i

14. l,aITev. T.J.. Cox. P .-\.. Schmidt..I L, I<:lo.

S.XI, Read..I.Y. "Rv:lI-Tinw l<nowle<lgv-[_a.-_,d

.q."_slclll',". .I.[,r_lOg(lZill_" '9, I (Spring 1.q88}.

15. [,afl'ey. T. S. \\'eilzenkalnp, Read, .l.. l'{ao. S..

5gchlilidi, .1. llltelligcnl RcaliTilneXlonitoring.

Procuvdhlg> oI" th,: Nalional ('o,lference ol, ..\rtificiat

hllt'lligt'ncc' -\..\:_1. I,qSS.

lt_, .Nilkm, hil/la, _i', rJ;il)a+ "r. OH(% lly(lrnulic

Circuit Design .-_sJslani. Proceedings of i.he

Conference oil Innovative Applications of Artificial

Intelligence, .%L.\I, 108.9.

17. O'13ricn..l. et. al. Tite Ford Molor Colllpany

Direci. l,abor ,%lanagemelli System. Proceedings of the

Conference on Innovative Appticat.ions of Artificial

lnldligence..-\AAI, l.gg,q.

lg. Sofi, ware Pl'oduetivh,y Solut.ions. Inc.

Cla.<_ie-Ada { :.ser :%la,l,ial. Sofl.ware Produciivily

Sohllions, lilcl 1988.

lg. Stal/kovic..I.A. "Misconceptions aboul, Real-

Time Computing". Compliler :,71, 10 (Ocl.ober lgSg).

r: _::

I

_.i

I

i

ill

I

i

I

I

II

I

I

I

l

!

I

ll

i

II

I

Ill

I

I

II

i
zI

I

I

I
I

I

